
www.manaraa.com

C Programming

Grégory Mermoud

School of Architecture, Civil and
Environmental Engineering

EPFL, SS 2008-2009

http://disal.epfl.ch/teaching/embedded_systems/

www.manaraa.com

Outline

� Week 4: main concepts introduced

� Today: consolidation and refinement of
your understanding of C

� Further details about control structures

� Variables and other data structures

� Functions and parameter passing

� Pointers

� Memory organisation and dynamic
allocation of memory (advanced topic)

www.manaraa.com

Data and control
� Any computer program has two components:

� Data structures

� Control structures

� Control structures update data structures.

int main() {
int i, j;
double A[3][3];

for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {

A[i][j] = 0.0;
}

}
A[0][2] = 2.0;
return 0;

}

Create a 3x3 matrix A

Initialize all elements of A to 0.0

Set A(0,2) to 2.0

www.manaraa.com

From C code to executable code

file

source file executable

COMPILATION
file.c

source file executable

int main() {
int a = 5;
double b = 4.3;
return a * b;

}

10100101010010
10100101001010
10010100101001
00010101001111
00100101010100

www.manaraa.com

What does the compiler do?

int main() {
int a = 5;
int b = 3;
b = a * b;
return a;

}

P
arser 1) It parses the code

int main() { a = 5 2) Upon declaration of a
variable, it allocates some
memory for it.

3) It generates executable
code for each statement that
modifies a data structure.

int main() {
int a = 5;
int b = 3;
b = a * b;
return a;

}

a = 5
b = 3

int main() {
int a = 5;
int b = 3;
b = a * b;
return a;

}

a = 5
b = 15

Computer memory

Computer memory

www.manaraa.com

Controlling the execution flow
� There is one more thing that the compiler does: it controls the

execution flow of the program.

� It does that by updating a very special variable that is internal
to the microcontroller: the Program Counter (PC), which
indicates what instruction must be executed next.

� As a C programmer, you do not care about the PC. The As a C programmer, . The
execution flow can be modified using control statements.

float max = 0.0;
float a = 5.0;
float b = 2.1;

if (a > b) {
max = a;

} else {
max = b;

}

return max;

a > b ?

max = a max = b

return max

TRUE FALSE

www.manaraa.com

Conditions
� Conditions can be expressed using logical expressions:

> (greater than)

< (less than)

>= (for greater than or equal to)

<= (for less than or equal to)

!= (not equal)

== (to test for equality)
do not confuse a == 1 (equality)

with a = 1 (affectation)== (to test for equality)

� In C90, there is no boolean variable (true or false). Instead, true
is represented by any value not equal to 0 and false is represented by
the value 0.

int a = 0;

if (a = 1) {
// this code is reached

} else {
// this won’t happen

}

int a = 0;

if (a == 1) {
// this won’t happen

} else {
// this code is reached

}

with a = 1 (affectation)

www.manaraa.com

Conditional branches

switch (a) {
case 1:
{

// if a == 1, do this
break; // jump to the rest of the code

}
case 2:
{

if (a == 1) {
// if a == 1, do this

} else if (a == 2) {
// if a == 2, do this

} else {
// otherwise, do this

}
// rest of the code

� The switch structure is very useful when the execution flow depends
on the value of a single integral variable (int, char, short, long).

{
// if a == 2, do this
break; // jump to the rest of the code

}
default:
{

// otherwise, do this
}

}
// rest of the code

// rest of the code

Do not forget the break instructions, otherwise the statements
in the rest of the switch will also be executed!

Both codes have exactly the same behavior!

www.manaraa.com

Conditional loops
Conditional loops are a combination of “if..then” and a jump.

int total = 0;
int i = 0;
int array[3] = {12,3,-5};

while (i < 3) {
total += array[i];

declarations

total += array[i];
i++;

}

return i;

i < 3 ?

total += array[i]
i++

return i

TRUEFALSE

What is the value of total at
the end of the program?

total = 10

www.manaraa.com

Conditional loops
The loop for is useful when an iteration count (i in the example below)
needs to be maintained, but the number of iterations must be known.

int total = 0;
int i = 0;
int array[3] = {12,3,-5};

for (i = 0; i < 3; i++) {
total += array[i];

i = 0

declarations

total += array[i];
}

return total;
i < 3 ?

total +=
array[i]

return total

TRUEFALSE

i++

What is the value of total at
the end of the program?

total = 10

www.manaraa.com

break and continue
The statements break and continue cause the program to exit a
loop or to jump directly to its next iteration, respectively.

int total = 0;
int i = 0;
int array[3] = {12,3,-5};

while (1) {
if (i < 3) {

true ?

TRUEFALSE

declarations

if (i < 3) {
total += array[i];
i++;
continue;

} else {
break;

}
// unreachable code

}

return i;

i < 3

return i

TRUEFALSE

break;

FALSE

total += array[i];
i++;
continue;

TRUE

www.manaraa.com

More about data structures
� Often, you need more complex data structures than simple

variables. This is especially true in signal processing and
related applications!

� For instance, how would you deal with a 1D signal in C?
Using arrays!

int signal[50];

Quantization of a continuous signal (in grey)
resulting in a digital signal (in red)

int signal[50];
signal[0] = 0;
signal[1] = 4;
signal[2] = 5;
signal[3] = 4;
signal[4] = 3;
signal[5] = 4;
signal[6] = 6;
...

www.manaraa.com

Arrays
� For an image, you can use a 2D

array!

float epuck[640][480];

� And you can use nested loops to
parse and process this image:

epuck
float epuck2[640][480];

for (i = 0; i < 640; i++) {
for (j = 0; j < 480; j++) {

epuck2[640-i-1][j] = epuck[i][j];
}

}

epuck2

epuck

What is the transformation
performed by this program?

www.manaraa.com

Functions
� Functions must be declared using the

following syntax:
type name(type1 arg1, type2 arg2, …);

� Here are some typical examples:
int mult(int a, int b);
double cos(double theta);

mult

a b

intdouble cos(double theta);
double norm(double v[]);

� Sometimes, you do not want your functions to return
a value. You can use the keyword void !

void display_matrix(double m[][]);
void exchange(int a, int b);

int

www.manaraa.com

Variable scope: local and global
� Any variable has a scope, i.e. a region where this variable can be

used (read and/or write).

� In C, since variables must be declared at the beginning of the
function, the scope of a variable is the function block:

#include <stdio.h>

void exchange(int a, int b) {
What about this b? It is a different
variable, with a different scope!void exchange(int a, int b) {

int tmp = a;
a = b;
b = tmp;
printf(“Exchange: a = %d, b = %d\n", a, b);

}

int main() {
int a = 5;
int b = 7;

exchange(a,b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;
}

variable, with a different scope!

scope of b

� The scope of a variable does
not extend beyond function
calls!

� Use global variables if you
want to use a unique variable
in multiple functions.

www.manaraa.com

Global variables
� A variable is global when it is declared outside of any block.

� Generally, try to avoid using them! If you want to use a constant
value (known at compile time), rather use a symbolic constant.

� Using symbolic constants is way more efficient and allows the
compiler to perform a better optimization of your code, but you
cannot change the value of this constant in the code!

#include <stdio.h> #include <stdio.h>#include <stdio.h>

int unit_cost = 10; // global variable

int total_cost(int units) {
return unit_cost * units;

}

int main() {
int units = 12;
int total = 0; unit_cost

total = total_cost(units);

printf(“%d units at %d CHF each cost %d
CHF\n", units, unit_cost, total);

return 0;
}

#include <stdio.h>

#define UNIT_COST 10 // symbolic constant

int total_cost(int units) {
return UNIT_COST * units;

}

int main() {
int units = 12;
int total = 0; unit_cost

total = total_cost(units);

printf(“%d units at %d CHF each cost %d
CHF\n", units, UNIT_COST, total);

return 0;
}

www.manaraa.com

Argument passing in C
� Arguments are always passed by value in C

function calls! This means that local copies of the
values of the arguments are passed to the routines!

#include <stdio.h>

void exchange(int a, int b) {
int tmp = a;int tmp = a;
a = b;
b = tmp;
printf(“Exchange: a = %d, b = %d\n", a, b);

}

int main() {
int a = 5;
int b = 7;

exchange(a,b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;
}

computer:~> ./exchange
computer:~> Exchange: a = 7, b = 5
computer:~> Main: a = 5, b = 7

www.manaraa.com

exchange
memory area

What happens?
#include <stdio.h>

void exchange(int a, int b) {
int tmp = a;
a = b;
b = tmp;
printf(“Exchange: a = %d, b = %d\n", a, b);

}

int main() {
int a = 5;
int b = 7;

b = 7

a = 5

b = 7

a = 5
copied arguments

a = 7

b = 5 memory areaint b = 7;

exchange(a,b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0
}

tmp = 5

Computer memory

computer:~> Exchange: a = 7, b = 5
computer:~> ./exchange

computer:~> Main: a = 5, b = 7

Output:

www.manaraa.com

How to solve the problem?

#include <stdio.h>

void exchange(int *a, int *b) {
int tmp = *a;
*a = *b;
*b = tmp;
printf (“Exchange: a = %d, b = %d \ n", *a, *b); computer:~> ./exchange

� By using pointers, i.e. variables that contain the
address of another variable!

Output:
printf (“Exchange: a = %d, b = %d \ n", *a, *b);

}

int main() {
int a = 5;
int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;
}

computer:~> ./exchange
computer:~> Exchange: a = 7, b = 5
computer:~> Main: a = 7, b = 5

int *a and int *b are pointers!

www.manaraa.com

Pointer?
A pointer is a variable that contains the address of

another variable.
� A pointer can be declared as follows:

� To obtain the address of another variable, the operator & can
be used:

type* name

be used:

int a = 5;
int* p = &a;

a = 5

p = 6

Type Address Value

a int 6 5

p int* 3 6
Computer memory

1

2

3

4

5

6

7

0

www.manaraa.com

#include <stdio.h>

void exchange(int *a, int *b) {
int tmp = *a;
*a = *b;
*b = tmp;
printf(“Exchange: a = %d, b = %d\n", *a, *b);

}

int main() {
int a = 5;

exchange
memory area

What happens now?

b = 7

a = 5

b = 2

a = 1
copied arguments

1

2

3

4

a = 7

b = 5

Addresses

0

int a = 5;
int b = 7;

exchange(&a,&b);

printf(“Main: a = %d, b = %d\n", a, b);

return 0;
}

memory areab = 2

tmp = 5

Computer memory

computer:~> Exchange: a = 7, b = 5
computer:~> ./exchange

computer:~> Main: a = 7, b = 5

4

5

6

7

Output:

www.manaraa.com

The operators * and &

� The symbol * has two different
meaning depending on the context.

� In a declaration, it indicates that
we are declaring a pointer (i.e., a
variable that contains the address
of another variable):

1

2

3

4

0

int a = 1;

p = 6of another variable):

� In other cases, it tells the compiler
to interpret the content of the
variable as an address, i.e. to
read/write the data at the address in
the variable:

int* p = &a;

*p = 3;

Computer memory

4

5

6

7

a = 1

p = &a *p = 3

a = 3

www.manaraa.com

Arrays
� Arrays and pointers are closely related. Actually, they are the

exact same thing!

1

2

3

4

5

float v[3];
v[0] = 1.3;
v[1] = 4.5;
v[2] = 5.2;

1.3
4.5
5.2

0

Computer memory

5

6

7 v = 2

� The variable v is actually a pointer of type float*

� The expression v[0] is the same as *v or *(v+0)

� The expression v[1] is the same as *(v+1)

Type Address Value

v float* 7 2

v[1] float v+1(3) 4.5

www.manaraa.com

Strings
� There is no string type in C. Instead, we use arrays of char ,

i.e. the type char*.
1

2

3

4

5

6

char str[] = “hello”;
h

Type Address Value

str char* 9 2

str[4] char word+4 ‘o’

e

l

l

o

0

Computer memory

6

7

� You can use the printf to print out chains of character. It
will read up to the character ‘\0’ .

str[4] char word+4
(6)

‘o’

str[2] char word+2
(4)

‘l’

o

\0

str= 2

8

9

printf(“%s”,str); computer:~> hello

printf(“%s”,str+3); computer:~> lo

www.manaraa.com

Memory: a more realistic approach
� In a real computer, memory is organized into blocks

of 8 bits, called bytes.

� On most modern computers , each byte has its own
address.

� Memory is limited, not only in terms of the number
of RAM modules that are installed, but also in terms

1

2

3

4

5

8 bits

10011010
11101001
10011010
11101001
10011010

0 11001010

of RAM modules that are installed, but also in terms
of the number of addresses available.

� Furthermore, a program is not allowed to use (read
and/or write) all bytes: some are reserved by the
operating system. If you try to access them (using a
pointer), your program will crash (segmentation fault
or bus error).

8-bit computer memory

5

6

7

8

10011010
11101001
10011010
11101001

int *p = 1;
*p = 0;

segmentation fault (trying to
write at address 1)

www.manaraa.com

Binary addressing and
hexadecimal notation

� Since everything is binary in a
computer, addresses are also binary.

� For the sake of clarity, we generally
write addresses in hexadecimal
notation!

8 bits

10011010
11101001
10011010
11101001
10011010

11001010
00000001

00000010

00000011

00000100
00000101

00000000
0x01

0x02

0x03

0x04
0x05

0x00

� By convention, we add 0x in front of a
hexadecimal expression.

8-bit computer memory

10011010
11101001
10011010
11101001

00000101

00000110

00000111

00001000

0xB4CD
1011 0100 1100 1101

B 4 C D

0x05

0x06

0x07

0x08

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

www.manaraa.com

The concept of “word”

� A word is a fixed-sized group of bits, which serves as a
natural unit of data used by a particular computer architecture.

� Generally, word sizes are multiple of 8 bits, but this can vary
as a function of the architecture.

� Note: generally, the memory is organized into multiple
columns instead of a single one, so that the width of the columns instead of a single one, so that the width of the
memory is equal to a word size.

32-bit computer memory (e.g., Intel Pentium)

word size = 32 bits

10011010 11101001 10011010 11101001
10011010 11101001 10011010 11101001
10011010 11101001 10011010 11101001
10011010 11101001 10011010 11101001

0x04

0x08

0x0C

0x00

www.manaraa.com

The size of the data types

� Each data type requires a certain number of bytes to be stored
in memory, and this size can change as a function of the
operating system (Windows, Linux, etc.) and the architecture
of the system.

� The function sizeof(type) returns the size of the data
type (in bytes).

printf("%d",sizeof(char)); /* prints 1 */
printf("%d",sizeof(short)); /* prints 2 */
printf("%d",sizeof(int)); /* prints 4 */
printf("%d",sizeof(long)); /* prints 4 */
printf("%d",sizeof(float)); /* prints 4 */
printf("%d",sizeof(double)); /* prints 8 */

www.manaraa.com

The size of pointers

� Reminder: a pointer is a variable that contains the address
of another variable.

� Therefore, the size of any pointer is constant, regardless of
the data type that it points to (since it contains only the
address of the variable, which does not depend on its type,
obviously).

printf("%d",sizeof(char*)); /* prints 4 */
printf("%d",sizeof(short*)); /* prints 4 */
printf("%d",sizeof(int*)); /* prints 4 */
printf("%d",sizeof(long*)); /* prints 4 */
printf("%d",sizeof(float*)); /* prints 4 */
printf("%d",sizeof(double*)); /* prints 4 */

On a 32-bit computer

printf("%d",sizeof(char*)); /* prints 8 */
printf("%d",sizeof(short*)); /* prints 8 */
printf("%d",sizeof(int*)); /* prints 8 */
printf("%d",sizeof(long*)); /* prints 8 */
printf("%d",sizeof(float*)); /* prints 8 */
printf("%d",sizeof(double*)); /* prints 8 */

On a 64-bit computer

www.manaraa.com

Dynamic allocation of memory
(advanced topic)

� Java users often take for granted dynamical data structures
such as java.util.ArrayList .

� These data structures are dynamical because they grow
automatically in memory as you add data to them.

� In C, you cannot do that without managing memory yourself.� In C, you cannot do that without managing memory yourself.

int signal[50];
signal[0] = 0;
signal[1] = 4;
signal[2] = 5;
signal[3] = 4;
signal[4] = 3;
...

� In this code sample, for instance, the
array signal can contain 50 integers
and you cannot make it grow further.

� In many cases, you do not know at
compile time the size of your data
structure. In such cases, you need to
allocate memory dynamically!

This value has to
be a constant!

www.manaraa.com

Dynamic allocation of memory
(advanced topic)

� To allocate a certain amount of memory, you can use the function
malloc(size) , where size is the number of bytes of memory
requested (which does not have to be constant).

� malloc returns a pointer to the first byte of memory which has
been allocated.

� As a result, the static array declaration int signal[50] � As a result, the static array declaration int signal[50]
becomes, in its dynamic version:

int* signal = (int*) malloc(50 * sizeof(int));
signal[0] = 0;
signal[1] = 4;
signal[2] = 5;
signal[3] = 4;
signal[4] = 3;
...

This value does not have
to be a constant!

Casting is required for
compilation (without -> type error)

www.manaraa.com

Freeing the memory

� If you allocated some memory
dynamically, the compiler will not
take care of freeing the allocated
block of memory when you no
longer need it.

� Use the function free(void
*ptr) to make the block

#include <stdlib.h>

#define MAX_SIZE 1000000

int main() {
int i;
int *v; // a vector

// create a vector of size i
for (i = 1; i < MAX_SIZE; ++i) {

v = (int*) malloc(i*sizeof(int));
// do something with vector v

}

return 0;

available to be allocated again.

� If you perform a malloc without
its free counterpart, you will
create a memory leak.

� Therefore, write a free for each
malloc you write!

� After you freed memory, you can
no longer access it!

return 0;
}

#include <stdlib.h>

#define MAX_SIZE 1000000

int main() {
int i;
int *v; // a vector

// create a vector of size i
for (i = 1; i < MAX_SIZE; ++i) {

v = (int*) malloc(i*sizeof(int));
// do something with vector v
free((void*) v); // free memory

}

return 0;
}

www.manaraa.com

Commented examples in CCommented examples in C

www.manaraa.com

Finding the maximum in an array

#include <stdio.h>
#include <limits.h>

#define N_VALUES 5

int main() {
int values[N_VALUES] = {1,5,2,7,3};
int max = INT_MIN;
int i = 0;

Includes needed functionalities (limits.h provides the
constant INT_MIN that is the smallest defined integer)

Symbolic constants for the number of values in the array

Array declaration and initalization

for (i = 0; i < N_VALUES; ++i) {
if (values[i] > max) {

max = values[i];
}

}

printf("The maximum is %d\n",max);

return 0;
}

Iteration using a for loop on the entire array

If we find a larger value than max, we update max

Print out the result

The program returns 0 because everything went well

www.manaraa.com

Standard deviation
#include <stdio.h>
#include <math.h>

#define N_VALUES 10

int main() {
float sample[N_VALUES] = {4.8, 4.6, 5.1, 5.9, 4.3, 5.0, 6.3, 5.4, 3.5, 5.0};
float mean = 0.0;
float std = 0.0;
int i;

for (i = 0; i < N_VALUES; ++ i) {

Includes needed functionalities (math.h provides the
function sqrt())

for (i = 0; i < N_VALUES; ++ i) {
mean += sample[i];

}
mean /= (float) N_VALUES;

for (i = 0; i < N_VALUES; ++i) {
std += (sample[i]-mean)*(sample[i]-mean);

}
std /= (float) N_VALUES;
std = sqrt(std);

printf("The standard deviation of the sample is %f\ n",std);

return 0;
}

Compute the sum of all elements in the sample...

...and divide it by the number of elements to
obtain the mean!

Directly apply the formula of the
standard deviation...

www.manaraa.com

Passing an array to a function

#include <stdio.h>

#define SIZE 3

void g(int array[], int const size) {
int i;

for (i = 0; i < size; ++i) {
array[i] = 2 * (i+1);

}
}

� The two variables array and
array are not the same (array
is a copy of array)!

� However, since they are pointers
(arrays = pointers) which point to
the same memory portion, our
function g() is still able to modify }

int main(void) {
int i;
int array[SIZE] = {0, 0, 0} ;

g(array, SIZE);

for (i = 0; i < SIZE; ++i) {
printf(“%d:%d ", i, array[i]);

}

return 0;
}

computer : ~> gcc –o array2fun array2fun.c
computer : ~> ./array2fun
computer : ~> 0:2 1:4 2:6

function g() is still able to modify
the content of the array.

� The function g() can also be
declared like this:

� Here is the output of the program:

void g(int* array, int const size);

www.manaraa.com

A (tortuous) pointer example
#include <stdio.h>

int main() {
int i = 10;
int** p1;
int* p2;

0x1

0x2

0x3

0x4

0x5

0x6

0x0

p2 = ?

p1 = ?

i = 10

p1=0x6

p2=0x1

p2[1]=?
i = 5

p1 = &p2;
*p1 = &i;
*(&p2[1]-1) /= 2;

printf("i = %d", i);

return 0;
}

Computer memory

0x6

0x7

p2 = ?p2=0x1

&p2[1] == 0x2

&p2[1]-1 == 0x1

computer:~> i = 5
computer:~> ./pointers
Output:

www.manaraa.com

Reading and references
� I strongly recommend that you read the tutorial “Pointers

in the pocket”, by Vlad Trifa (in French!).

� There are a lot of excellent C tutorials on the web:

� http://www2.its.strath.ac.uk/courses/c/by Steve Holmes

� http://www.cs.cf.ac.uk/Dave/C/CE.htmlby A.D.
MarshallMarshall

� And you can also find reference manuals:

� TheC Library Reference Guide
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/

� C Language Syntax Reference
http://www.cprogramming.com/reference/

� Whenever you do not remember how to use a function or a
data/control structure, just do a man or google it!

www.manaraa.com

Final note
� Thanks to Jean-Cédric Chappelier for making his course

material available to me for this course!

� Thanks to Vlad Trifa for his hilarious (but very didactic)
tutorial! This course has been largely inspired by this
tutorial...

� Most of the code samples presented in these slides are � Most of the code samples presented in these slides are
available on Moodle. Compile, run and modify them in
order to get a better understanding of the course material!

� To do that, you can use the following command:

computer:~> gcc –o myprog myprog.c
computer:~> ./myprog

