ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

W
Disal

C Programming

Grégory Mermoud

School of Architecture, Civil and
Environmental Engineering

EPFL, SS 2008-2009
http://disal.epfl.ch/teaching/embedded systems/

www.manaraa.com



i e
ECOLE POLYTECHNIQUE

e . 7N .
Outline -
= Week 4: main concepts introduced

= Today:consolidation andrefinement of
your understanding of C

» Further details abowbntrol structures
= Variables and othafata structures

* Functions and parameter passing

= Pointers

= Memory organisation and dynamic
allocation of memory (advanced topic)

www.manaraa.com



" A
. 216

ECO

Data and control .

= Any computer program has two components:
= Data structures
= Control structures

= Control structurespdatedata structures

int main
int i, jf) { / Create a 3x3 matrix A
double A[3][3];

for(i =0;1 <3;i1++){
for j =0;j<3; j++){
Alill] =
}
}
ATOI[2] = 2.0; — Set A(0,2) to 2.0
return O;

}

/ Initialize all elements of Ato 0.0

www.manaraa.com



i (€
. ¢

Disal

From C code to executable code

_ COMPILATION
q

source file executabl
inyrnawm){ 10100101010010
int a=>5; 10100101001010
double b = 4.3: 10010100101001
return a * b; 000101010011112

} 00100101010100

www.manaraa.com



e . 2/
= \What does the compiler do? &

int main() {
int a=5;
int b=3;
b=a*b;
return a;

}

< lasred

int main() {
Inta =5;

2) Upon declaration of a
intb = 3; variable, it allocates some

W] O1

@) jeb

b=a*b; ]
return a: memory for It.

} Computer memory

int main — o
int a95{; ‘g — ?5 3) It generates executable
intb = 3; — code for each statement that
b=a*b; .
return a: modifies a data structure.

} Computer memory

www.manaraa.com



. s
“Controlling the execution flow &

* There is one more thing that the compiler does: it controls the
execution flow of the program.

* |t does that by updating a very special variable that is internal
to the microcontroller: the Program Counter (PC), which
Indicates what instruction must be executed next.

= As a C programmeyou do not care about the PC. The
execution flow can be modified usiagntrol statements.

float max = 0.0;

float a = 5.0;

floatb = 2.1;

if (a>Db){ TWE
max = a;

ele |

max = b; \/
}

www.manaraa.com

return max;



M | D) (€
e | %@

| ] n
ECOLE POLYTECHNIQUE 3 111
FEDERALE DE LAUSANNE O n I I O n S Dlsal

= Conditions can be expressed using logical expressio
> (greater than)
< (less than)
>= (for greater than or equal to)
<= (for less than or equal to)
1= (not equal)

do not confuse a == 1 (equality)
== (to test for equality witha = 1 (affectation)

= In C90, there is no boolean variableig¢ orfalse ). Insteadfrue
IS represented by any value not equal to Ofalsg@ is represented by

the value 0.
int a=0; % int a=0;
if(a=1){ if (@a==1){
/l this code is reached /[ this won’t happen
} else { } else {
// this won’t happen /l this code is reached
} }

www.manaraa.com



(e

2/
W

wws= - Conditional branches s

= Theswitch structure is very useful when the execution flowelads
on the value of a single integral variable (intaGtshort, long).

switch (a) {
case 1:
{
/Il if a==1, do this
break; // jump to the rest of the code

}

case 2:

{
Il'if a==2, do this
break; // jump to the rest of the code

}

default:

{

}
}

/] rest of the code

/I otherwise, do this

if(a==1){

/lif a==1, do this
}elseif (a==2){

/l'if a == 2, do this
} else {

/I otherwise, do this

}

/] rest of the code

Both codes have exactly the same behavior!

Do not forget the br eak instructions, otherwise the statements

In the rest of the swi t ch will also be executed!

www.manaraa.com



o) e
ke | %%\@

oLt FoLTECIQU: C on d |t| on al I 00 p S i,

Conditional loops are a combination of “if..then” and a jJump.

declarations

int total = O;
int i =0;
int array[3] = {12,3,-5};

while (i < 3) {

total += array[i];
| ++;

) IEEE-

return i; FALSE w
total += arrayf[i] _
What is the value of total at i++

the end of the program?

total = 10

www.manaraa.com




il . o

oLt FoLTECIQU: C on d |t| on al I 00 p S U

The loopfor is useful when an iteration coumt iy the example below)
needs to be maintained, but the number of iteratust be known.

int total = O;
int i =0;
int array[3] = {12,3,-5};

for( i =0; i <3; i++){ m

total += array[i]; l
}

| <37

&
What is the value of total at array[i]

the end of the program? l

total = 10

www.manaraa.com

return total;

I++



(Rl | : AS
feo oo b rea k an d continue )

The statementgreak andcontinue cause the program to exit a
loop or to jump directly to its next iteration, pestively.
int total = 0;

int i =0;

int array[3] = {12,3,-5}; v
true ? “

while (1) { TRUE
if( i < 3){ FALSE \
total += array([i];

continue;

} else { FALSE TRUE
}

break;
// unreachable code break; total += array([i];

) / ++:
return i;

continue;

return |

www.manaraa.com



(e

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

variables. This is especially true in signal processing and
related applications!

More about data structures

= Often, you need more complex data structures than simple

* For instance, how would you deal with a 1D signal in C?

Using arrays!

Int S|gnal[50]

signal|
signal
signal
signal
signal
signal
signal

D 0B wWN R IO

A

Disal

D T e N | -r - =TT Tr . N |
| 1 | 1 | ] | 1 | ] |
—_— - | R I | - - PR I [ |
| 1 | 1 | | | 1 | 1 |
| 1 1 | I 1 I ] |
e =T r-" = i I | - -r - "
| 1 | | 1 1 | 1 |
- - - = = o= k= - = = 4
] I ] | ] ] ]
1 | ] | 1 } } J
7 - Tr - - -r B Y I 1 -r -
] ] | 1 | 1 I 1 I 1 |
[ e I A e e L e L |
1 | 1 | 1 | 1 | 1 | 1 |
1 1 | 1 | 1 ] 1 ] 1 |
- Y I e I P I R I I B | -r - "
1 | 1 | ] | 1 | 1 | :.I. |
1 1 | 1 | 1 ] 1 ] |
—>

Quantization of a continuous signal (in grey)
resulting in a digital signal (in red)

www.manaraa.com



4 2 (G
. A

e Arr ay S Disal
= For an image, you can use a 2D "=
array!
float epuck[640][480];

= And you can use nested loops to
parse and process this image:

epuck

float epuck2[640][480];

for(i =0;i <640; i++) {
for (j = 0; ] < 480; j++) {
epuck2[640-i-1][j] = epucK]i][jI;
}
}

What is the transformation

performed by this program?
epuck?2

www.manaraa.com



.% I’ e AR

/ =
Eco C QU @

Functions el

= Functions must be declared using the 2 b
following syntax: l l

type nane(typel argl, type2 argz, ...);
= Here are some typical examples:

int mult(int a, int b); l
double cos(double theta); INt
double norm(double v[]);

it

= Sometimes, you do not want your functions to return
a value. You can use the keywmaid

void display_matrix(double m[][]);
void exchange(int a, int b);

www.manaraa.com



(e Y

NN
ECOLE POLYTECHNIQUE ’—\\

“HEE Variable scope: local and globaf™

= Any variable has acope, i.e. a region where this variable can be
used (read and/or write).

= |n C, since variables must be declared at the nagof the
function, the scope of a variable is the functitwck:

#include <stdio.h>

What about thi®? It is a different

void exchange(int a, int b) { . . .
int tmp = a;/ variable, with a different scog
a=Db;

b =tmp; .
| prin(Exchange: a=54d, b =4, 2, ), = The scope of a variable does
- not extend beyond function
el calls!

intb=7;

scopeofb | se global variables if you

want to use anique variable
In multiple functions.

exchange(a,b);
printf(*Main: a = %d, b = %d\n", a, b);

return O;

www.manaraa.com



(e

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Global variables 2

» A variable isglobal when it is declared outside of any block.

= Generally, try to avoid using them! If you wantuse a constant
value (known at compile time), rather usg/mbolic constant.

= Using symbolic constants is way more efficient atidws the
compiler to perform a better optimization of yoode, butyou
cannot change the value of this constant in the code!

#include <stdio.h>
int unit_cost = 10; // gl obal variable

int total_cost(int units) {
return unit_cost *units;

}

int main() {
int units = 12;
int total = 0; unit_cost

total = total_cost(units);

printf(*%d units at %d CHF each cost %d
CHF\n", units, uni t _cost, total);

return O;

}

#include <stdio.h>
#define UNIT_COST 10 // synbolic constant

int total_cost(int units) {
return  UNI T_COST * units;

}

int main() {
int units = 12;
int total = 0; unit_cost

total = total_cost(units);

printf(*%d units at %d CHF each cost %d
CHF\n", units, UNI T_COST, total);

return O;

}

www.manaraa.com



.é I’ e AR

Eco C QU @\k

Argument passing in C

= Arguments are always pasdadvaluein C
function calls! This means thhdcal copies of the
values of the arguments are passed to the routines!

#include <stdio.h>

void exchange(int a, int b) {
int tmp =a;

a=b;

b =tmp;

printf(*Exchange: a = %d, b = %d\n", a, b); computer:~> ./exchange
} computer:~> Exchange:a=7,b=5
_ _ computer:-~>Main:a=5,b=7
int main() {

int a=2>5;

int b=7,

exchange(a,b);
printf(*Main: a = %d, b = %d\n", a, b);

return O;

www.manaraa.com



il ¢

ECOLE POLYTECHNIQUE

FSDRALE DA LASANNE W h at h a p p e n S ? Disal

#include <stdio.h>

void exchange(int a, int b) {

int tmp = a; |

a=b; |

b=tmp;, |

printf(*Exchange: a = %d, b = %d\n", a, b);

(@x BV
Iyl
~N | o1

i copied arguments
int main() {
inta=>5;
inth=7;

exchange
memory area

[exchange(a,b); |

printf(*Main: a = %d, b = %d\n", a, b);

return O Computer memory

}

Output:

computer:~> ./exchange
computer.~> Exchange:a=7,b =5
computer:~> Main:a=5,b =7

www.manaraa.com



.é l’ e AS

Eco C QU @

* How to solve the problem? ==

= By usingpointers, i.e. variables that contain the
address of another variable!

#include <stdio.h>

void exchange(int *a, int *b) {

int tmp = *a;

s Output:

*b = tmp;

printf  (“Exchange: a = %d, b = %d \ n", *a, *b); computer:~> ./exchange
} computer:~> Exchange:a=7,b=5
_ _ computer:-~>Main:a=7,b=5
int main() {

int a=>5;

int b=7;

exchange(&a,&b);

printf(*Main: a = %d, b = %d\n", a, b);

return O;

INt *a and Int *b are pointers!

www.manaraa.com



e | 2

ECOLE POLYTECHNIQUE

e LA USSR P O I n te r? Disal

A pointer is avariable that containghe addr ess of
another variable.

= A pointer can be declared as follows:

type* name
= To obtain the address of another variable, the opetatan
be usec
Int a=>5; 2
Int* p = &a; 2
3] p=6
T s e —)
a int 6 5 6| a=5
P int* 3 6 !

Computer memory

www.manaraa.com



e | 2

p7 =
ECOLE POLYTECHNIQUE /1’?\

What happens now? el

#include <stdio.h> Addresses

void exchange(int *al, int *b) { \

int tmp = *a;

*q = *b; I

*b = tmp; |

printf(“"Exchange: a = %d, b = %d\n", *a, *b); |

(@x) Jeb
i
H| KA

copied arguments

a

int main() {
inta= 5;
intb=7;

exchange
memory area

lexchange(&a,&b); |

N o oo A WODN - O

printf(*Main: a = %d, b = %d\n", a, b);

return O: Computer memory

}
Output:

computer:~> ./exchange
computer.~> Exchange:a=7,b =5
computer.~>Main:a=7,b=5

www.manaraa.com



.% I’ lﬂ AR

.

= The operators and & B

= The symbofF has two different

meaning depending on the context. nta=1;

= |n a declaration, it indicates that
we are declaring a pointer (i.e., a
variable that contains the address
of another variable

int* p = &a; p = &a
* |n other cases, it tells the compiler
to interpret the content of the
variableasan address, i.e. to

read/write the data at the address in
the variable:

p=6

a=23

N o o0~ W N RO
*
©
[
W

Computer memory

www.manaraa.com



gl AN

p7 =
ECOLE POLYTECHNIQUE /1’?\

FEDERALE DE LAUSANNE A r r ay S Disal

» Arrays and pointers are closely related. Actually, they are the
exact same thing!

float v[3]; 2
v[0] = 2 1.3
V[1] = 3 4.5
v[2] = 4 5.2
5
L e L] o SR
v  float* 7 v=2

Computer memory

v[1l] float v+1(3) 4.5

= The variabler is actually a pointer of typoat*
* The expression[0] Is the same as/*or *(v+0)
* The expression[l] isthe same asv{1)

www.manaraa.com



il ¢

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE Stri n g S Disal

* There is no string type in C. Instead, we use arragharf ,
l.e. the typechar*.

0
char str[] = “hello”; ; -
- Lo
char* ;1 :
str [ 4] char word+4 ‘0’ 5 o
(©) 7o
str[ 2] char word+2 I 8
(4) 9 str=2

Computer memory

= You can use thprintf  to print out chains of character. It
will read up to the charact&0’

printf(“%s”,str); —computer.~> hello
printf(“%s”,str+3); cemputer:~> o

www.manaraa.com



M e
. o

Eco C QU D I
I1sa

I\/Iemory a more realistic approach

= |n areal computer, memory is organized into blockg .8 bits
of 8 bits, calledytes. 0

= On most modern computers , each byte has its ownrt
address. 2

= Memory islimited, not only in terms of the number 411101001
of RAM modules that are installed, butalsoint® s5|[1001101

of the number of addresses available. 6111101001
= Furthermore, a program is not allowed to use (read7 10011010
8111101001

and/or write) all bytes: some are reserved by the
operating system. If you try to access them (uaing
pointer), your program will crash (segmentationtfau
or bus error).

8-bit computer memory

Int *p = 1; . segmentation fault (trying to
*p=0; write at address 1)

www.manaraa.com



i - . EAS
o Binary addressing and o
hexadecimal notation
= Since everything is binary in a ~8hits |
computer, addresses are disioary. 00000800 |11001010|
= For the sake of clarity, we generally 00000601 110011010
. . ’ : 0000080Q (11101001
write addresses in hexadecimal 00000608 | 100110710l
notation! 00000%0¢ |11101001
00000%05 [1001101
0xB4CD 0000006 [11101001
1011 0100 1100 1101 0000007 | 10011010l
B 4 C D 00000808 11101001

8-bit computer memory

= By convention, we add Ox in front of a
hexadecimal expression.

Decimal | o] 1| 2| 3| 4| 5| 6 7 g d 1p dh 12 13 14 15
Hexadecimal 0 1] 2 3 4 § ¢ 1 8 9 A B € D E

www.manaraa.com




. . , 2(¢
The concept of “word -

= A word is a fixed-sized group of bits, which serves as a
natural unit of data used by a particular computer architecture.

» Generallyword sizes are multiple of 8 bits, but this can vary
as a function of the architecture.

= Note: generally, the memory is organized into multiple
columns instead of a single one, so that the width ¢
memory is equal to a word size.

word size = 32 bits

< »
»

0x00 (10011010{ 11101001 10011010/ 11101001
0x04 110011010 11101001} 10011010/ 11101001
0x08 [1001101011101001/10011010] 11101001
0x0C 110011010/11101001{ 10011010] 11101001

32-bit computer memory (e.g., Intel Pentium)

www.manaraa.com



l%l’ e . A
=rz The size of the data types &«

= Each data type requires a certain number of bytes to be stored
In memory, and this size can change as a function of the
operating system (Windows, Linux, etc.) and the architecture
of the system.

* The functionsizeof( type) returns the size of the data
type (in bytes).

printf("%d",sizeof(char)); /* prints 1 */
printf("%d",sizeof(short)); /* prints 2 */
printf("%d",sizeof(int));  /* prints 4 */
printf("%d",sizeof(long)); /* prints 4 */
printf("%d",sizeof(float)); /* prints 4 */
printf("%d",sizeof(double)); /* prints 8 */

www.manaraa.com



(Rl | . . EAX
SCOLE POLYTECHNIQUE T h e sjze Of p oln ’[e s o),

» Reminder: a pointer is aariable that containshe address
of another variable.

» Therefore, the size of any pointelcsstant, regardless of
the data type that it points to (since it contains only the
address of the variable, which does not depend on its type,
obviously).

printf("%d",sizeof(char*)); /* prints 8 */
printf("%d",sizeof(short*)); /* prints 8 */
printf("%d",sizeof(int*));  /* prints 8 */
printf("%d",sizeof(long*)); /* prints 8 */
printf("%d",sizeof(float*)); /* prints 8 */
printf("%d",sizeof(double*)); /* prints 8 */

On a 82-bit computer

www.manaraa.com



A : : 2(€
- Dynamic allocation of memory A,

(advanced topic)

= Java users often take for granted dynamical data structures
such agava.util.ArrayList

= These data structures algnamical because they grow
automatically in memory as you add data to them.

* |n C, youcannot do that without managing memory yours

= |n this code sample, for instance, the TEiS value ?astlto
. . . e aconstant!
arraysignal can contain 50 integers N

and you cannot make it grow further. intsignall  50];

signal[0] = O;
= In many cases, you do not know at Signal{l% _a

compiletimethe size of your data signal[2] = 5;
structure. In such cases, you need to S!gna:[j] - ;‘5
allocate memory dynamically! f'.gna[ 1=3;

www.manaraa.com



M . . (€
lhe Dynamic allocation of memory &,

(advanced topic)

= To allocate a certain amount of memory, you cantlisdunction
malloc( si ze), wheresi ze is the number of bytes of memory

requested (which does not have to be constant).

= malloc returns a pointer to the first byte of memory whinas
been allocated.

= As aresult, the static array declaratiint  signal[50]
becomes, in its dynamic version:

int* signal = (int*) malloc( 50 * sizeof(int));

signal[0] =

signal[l] = 4; This value does not have
signal[2] = 5; to be a constant!
signal[3] = Casting is required for

signal[4] = compilation (without -> type error)

www.manaraa.com



. - A
£CoLE FOLYTECHNQUE Freein g th e memo ry 2> R,

* |f you allocated some memory
dynamically, the compiler wilhot

#define MAX_SIZE 1000000

take care of freeing the allocated ™"
block of memory when you no e e
longer need it. for 2 114 MAX. SIZE; ++1) {
v = (int* lloc(i*sizeof(int));
= Use the fu nctiorﬁree(void I df)n;o)mrr;?hi?\;(vx;ci’the\?egztncg)v
}
*ptr)  to make the block |
return O;

—

available to be allocated again.
= |f you perform amalloc without  #neude=sdiph

its free cou nterpart, you will #define MAX_SIZE 1000000
create anemory leak. it main( |
int *v; Il a vector

= Therefore, write d&ree for each o
. /I create a vector of size i
malloc you write! for (i = 1 i < MAX_SIZE; ++) {

v = (int*) malloc(i*sizeof(int));
I/l do something with vector v

= After you freed memory, you can free((voi d*) v); /lfree memory
no longer access it! }

return O;

}

www.manaraa.com



ECOLE POLY TECHNIQUE|
FEDERALE DE LAUSANNE]

Commented examples in C

www.manaraa.com




gl

w=iesd - Finding the maximum in an array &

#include <stdio.h>
#include <limits.h>

Includes needed functionalities (limits.h provides the
constant INT_MIN that is the smallest defined integer)

#define N_VALUES 5 Symbolic constants for the number of values in the array
int main() {
int values[N_VALUES] ={1,5,2,7,3}; Array declaration and initalization
Int max = INT_MIN;
inti=0;
for (i=0; i <N_VALUES; ++i) { Iteration using a for loop on the entire array
if (values][i] > max) {
max = valuesi]; If we find a larger value than max, we update max
}
}
printf("The maximum is %d\n",max); Print out the result
return O; The program returns 0 because everything went well

www.manaraa.com



A . . %J/w\@
-ﬂ“m Standard deviation R,

#include <stdio.h> Includes needed functionalities (math.h provides the
#include <math.h> function sqrt() )

#define N_VALUES 10

int main() {
float sample[N_VALUES] ={4.8, 4.6, 5.1, 5.9, 4.3, 5.0,6.3,5.4, 3.5, 5.0};
float mean = 0.0;
float std = 0.0;
int I;
for( i =0; i <N_VALUES;++ i){ _
mean += sample[i]; Compute the sum of all elements in the sample...
} .
mean /= (Toal) N VALUES. ...an_d divide it by the number of elements to
obtain the mean!

for i =0;i <N_VALUES; ++i) { Directly apply the formula of the
std += (sample[i]-mean)*(sample[i]-mean); standard deviation...

} 1 N

std /= (float) N_VALUES; _ | | .

std = sqrt(std); o= N leii?z - #) )
Tr=

printf("The standard deviation of the sample is %f\ n",std);

return O;

www.manaraa.com



(e

wass Passing an array to a function &

#include <stdio.h> u
#define SIZE 3
void g(int arrayl], int constsize) {

Int i; ]

for (i =0;i <size; ++i){
arrayli] = 2 * (i+1);
}
}

int main(void) {
int i
int array[SIZE] ={0, O, 0} ;

g( array, SIZE),

Y€

==
—

The two variablesr r ay and
arr ay are not the samea(r ay
IS a copy ofarr ay )!

However, since they are pointers
(arrays = pointers) which point to
the same memory portion, our

functiong() Is still able to modify

the content of the array.

The function g() can also be
declared like this:

void g(int* array, int const size);

for (I =0;1 < SIZE; ++i) {

Here is the output of the program:

. ~> gcc —o array2fun array2fun.c
. ~> Jarray2fun

printf(“%d:%d ", i, arrayfli); n
}
return O; computer
} computer
computer

:~>0:21:42:6

www.manaraa.com



! 2
FEDERA L.

. . 2/
s A (tortuous) pointer example &

#include <stdio.h>

O0x0
int main() { oo [T
!nt | = 10; ox3 | p1=0%6
Int** pl; Ox4
Int* p2; 0x5
0x6 | p2=OK1
pl — &pz’ 0X7Computer memory
*pPl = &i;
*(&p2(1]-1) /= 2; &p2[1] == 0x2
&p2[1]-1 == 0x1
printf("i = %d", 1);

return O: Output: |
computer:~> ./pointers

i computer.-~>1i =5

www.manaraa.com



ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Reading and references &

| strongly recommend that you read the tutorial “Pointers
In the pocket”, by Vlad Trifa (in French!).

There are a lot of excellent C tutorials on the web:
= hittp://www?2.its.strath.ac.uk/courseshy Steve Holmes

= http://www.cs.cf.ac.uk/Dave/C/CE.htioy A.D.
Marshal

And you can also find reference manuals:

* TheC Library Reference Guide
http://www.acm.uiuc.edu/webmonkeys/book/c gquide/

» C Language Syntax Reference
http://www.cprogramming.com/reference/

Whenever you do not remember how to use a function or a
data/control structure, just dav@an or google it!

www.manaraa.com



ke | . AT
seote rouyecaaue F 1IN al 1 Ote o)

= Thanks to Jean-Cedric Chappelier for making his course
material available to me for this course!

* Thanks to Vlad Trifa for his hilarious (but very didactic)
tutorial! This course has been largely inspired by this
tutorial...

= Most of the code samples presented in these slide
available on Moodle. Compile, run and modify them in
order to get a better understanding of the course material!

* To do that, you can use the following command:

computer.~> gcc —0 myprog myprog.c
computer:~> ./myprog

www.manaraa.com



